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Abstract
This benchmark suite presents a detailed description of a series of closed-loop con-

trol systems with artificial neural network controllers. In many applications, feed-forward
neural networks are heavily involved in the implementation of controllers by learning and
representing control laws through several methods such as model predictive control (MPC)
and reinforcement learning (RL). The type of networks that we consider in this manuscript
are feed-forward neural networks consisting of multiple hidden layers with ReLU activation
functions and a linear activation function in the output layer. While neural network con-
trollers have been able to achieve desirable performance in many contexts, they also present
a unique challenge in that it is difficult to provide any guarantees about the correctness of
their behavior or reason about the stability a system that employs their use. Thus, from a
controls perspective, it is necessary to verify them in conjunction with their corresponding
plants in closed-loop. While there have been a handful of works proposed towards the ver-
ification of closed-loop systems with feed-forward neural network controllers, this area still
lacks attention and a unified set of benchmark examples on which verification techniques
can be evaluated and compared. Thus, to this end, we present a range of closed-loop
control systems ranging from two to six state variables, and a range of controllers with
sizes in the range of eleven neurons to a few hundred neurons in more complex systems.
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1 Context and Origins.
In recent years, advances in Artificial Intelligence (AI) have enabled a diverse range of tech-
nologies that are directly impacting people’s everyday lives [16]. Particularly, within this space,
machine learning methods such as Deep Learning (DL) have achieved levels of accuracy and
performance that are competitive or better than humans for tasks such as pattern and image
recognition [12], natural language processing [7], and knowledge representation and reason-
ing [15,22]. Despite these achievements, there have been reservations about incorporating them
into safety critical systems [11] due to their susceptibility to unexpected and errant behavior
from a slight perturbation in their inputs [18]. Furthermore, neural networks are often viewed as
"black boxes" since the underlying operation of the neuron activations is often indiscernible [22].

In light of these challenges, there has been significant work towards the creation of methods
and verification tools that can formally reason about the behavior of neural networks [22].
However, the vast majority of these techniques have only been able to deal with feed-forward
neural networks with piecewise-linear activation functions [4]. Additionally, the bulk of these
methods have primarily considered the verification of input-output properties of neural networks
in isolation [22], and there are only a handful of works that have explicitly addressed the
verification of closed-loop control systems with neural network controllers [5, 8, 19–21]. One
of the central challenges in verifying neural network control systems is that applying existing
methodology to these systems is not straightforward [9], and a simple combination of verification
tools for non-linear ordinary differential equations along with a neural network reachability
tool suffers from severe overestimation errors [5]. Still, the verification of closed loop neural
network systems is deeply important as they naturally arise in safety critical systems [5] such
as autonomous vehicles, and complex control systems that make use of model predictive control
and reinforcement learning [16]. Thus, there is a compelling need for methods and advanced
software tools that can effectively deal with the complexities exhibited by these systems [5].

Inspired by a shortage of verification methods for closed-loop neural network control sys-
tems in the research literature, the central contribution of this paper is the provision of a set of
executable benchmarks that have been synthesized using methods such as reinforcement learn-
ing [17], and model predictive control [14]. The problems elucidated in the paper are modeled
using Simulink/Stateflow (SLSF) and are available at the following github repository1. We aim
to provide a thorough problem description to which the numerous tools and approaches for
non-linear systems and neural network verification present in the research community can be
evaluated and compared [22]. If the research community is able to devise acceptable solutions
to the aformentioned challenges they will stimulate the development of robust and intelligent
systems with the potential to bring unparalleled benefits to numerous application domains.

2 Description of benchmarks.
In this manuscript, we present a set of linear and non-linear closed-loop systems with continuous-
time plants and feedforward neural networks controllers trained using different controls schemes
such as reinforcement learning or model predictive control (MPC). A typical architecture de-
scribing the structure of these systems is displayed in Figure 2.1. All the neural networks

1https://github.com/verivital/ARCH-2019
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considered in this work possess a similar structure using the ReLU activation function in the
hidden layers and use a linear activation function in the output layer. This structure makes
them more amenable to the verification methods and tools available within the research litera-
ture [22].

Figure 2.1: Illustration of a closed-loop control system with a neural network controller.

The benchmarks elucidated in this paper are modeled using Simulink/Stateflow and we
have also used the Hybrid Source Transformer tool (HYST)2 [1] to transform the models of
the plants into the SpaceEx format [6]. Additionally, we have also provided the neural network
controllers, in a variety of formats including a matlab format used in the (Neural Network
Verication) NNV3 framework proposed by Tran et al. [19], Simulink models, and the Open
Neural Network Exchange4 (ONNX) format. The following section presents a brief description
of the benchmarks presented for verification.

2.1 Linear Inverted pendulum.
An inverted pendulum is a popular system commonly used as a benchmark in the area of control
theory. This system consists of a pendulum attached to a cart that is pointing upwards, which
is an unstable system in the absence of a controller. The verification goal of this benchmark
is to show that eventually the pendulum stops at the upright position and stays there. The
dynamics of this system have been linearized using the small angle approximation, for further
details see [10].

ẍ = 0.0043θ̇ − 2.75θ + 1.94u− 10.95ẋ,
θ̈ = 28.58θ − 0.044θ̇ − 4.44u+ 24.92ẋ,

(2.1)

2https://github.com/verivital/hyst
3https://github.com/verivital/nnv
4https://github.com/onnx
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In eq. 2.1u is the input torque, x is the position and ẋ is the velocity of the cart, θ is
the angle and θ̇ is the angular velocity of the pendulum. Except for θ̇ which is unconstrained,
we set the range of x to be between [-0.7, 0.7], the velocity ẋ to be between [-1.0, 1.0], and θ
to be between [-0.5236, 0.5236]. The initial conditions are set to 0 for the linear and angular
velocities, x0 ∈ [-0.5, 0.5], and θ0 ∈ [-0.2, 0.2]. The neural network controller has four inputs
(x, ẋ, θ, θ̇), one output (u), and two layers with [10, 1] neurons. The verification goal is to
show that the controller will drive the pendulum to its vertical position (θ = 0), and cause it
to remain there within 12 seconds.

2.2 Non-linear Cart-Pole.
This benchmark is obtained from the OpenAI gym [3], and corresponds to the version of the
cart-pole introduced by Barto, Sutton, and Anderson [2]. Although the overall scheme of this
system is very similar to the inverted pendulum, which also consists of a pendulum attached to
a cart, this variation of the system is unique in that the dynamic equations used to represent
it are more complex. Moreover, in this case, we represent the dynamics of the system as a set
of non-linear differential equations and alter the controller structure in addition to the initial
states and constraints. The dynamics of the cart-pole system are described as follows

ẍ = u+mlω2 sin(θ)
mt

−
ml(g sin(θ)− cos(θ))(u+mlω2 sin(θ)

mt
)

l( 4
3 −m

cos2(θ)
mt

)
cos(θ)
mt

,

θ̈ =
g sin(θ)− cos(θ)(u+mlω2 sin(θ)

mt
)

l( 4
3 −m

cos2(θ)
mt

)
cos(θ)
mt

(2.2)

where u ∈ {−10, 10} is the input force, which either pushes the cart left or right, g = 9.8 is
gravity, m = 0.1 is the pole’s mass, l = 0.5 is half the pole’s length, mt = 1.1 is the total mass,
x is the position of the cart, θ is the angle of the pendulum with respect to the positive y-axis,
v = ẋ is the linear velocity of the cart, and ω = θ̇ is the angular velocity of the pendulum. The
controller has four inputs (x, ẋ, θ, θ̇), four layers with [24, 48, 12, 2] neurons respectively, and
two outputs. The two outputs are then compared, and the input sent to the plant depends on
which output index has the greatest value. Thus, as an example if output1 > output2 then the
input force supplied to the plant is 10. However if output1 < output2 then the input supplied
to the plant is -10.

For this benchmark, the verification objective is to demonstrate that the pole will never
be more than 15 degrees from the vertical positions, and it will eventually reach the upward
position and that it will remain there. Similar to the inverted pendulum, it needs to be verified
that these properties are satisfied in the first 12 seconds. In other words, the goal is to achieve a
value of θ = 0 and stay there. The initial conditions for all state variables were chosen uniformly
at random between [-0.05, 0.05], but we did not impose any other constraints on the system.

2.3 Acrobot.
Similarly, this benchmark was obtained from OpenAI gym [3], and it was originally proposed as
a benchmark for reinforcement learning. The Acrobot system consists of two linked pendulums
with only the second joint actuated. Both links can swing freely and can pass by each other,
i.e., they don’t collide when they have the same angle. The goal is to swing the bottom link
at a height at least the length of one link above the base, which can be formally defined as
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changing θ1 and θ2 so that − cos(θ1) - cos(θ1 + θ2) ≥ 1. The dynamics of the Acrobot can be
expressed by the following set of equations

d1 = m1l
2
c1 +m2(l21 + l2c2 + 2l1lc2 cos(θ2)) + I1 + I2,

d2 = m2(l2c2 + l1lc2 cos(θ2)) + I2,

φ1 = −m2l1lc2θ̇
2
2 sin(θ2)− 2m2l1lc2θ̇2θ̇1 sin(θ2) + (m1lc1 +m2l1)g cos(θ1 −

π

2 ) + φ2,

φ2 = m2lc2g cos(θ1 + θ2 −
π

2 ),

θ̈1 = −d2θ̈2 + φ1

d1
,

θ̈2 =
τ + d2

d1
φ1 − φ2

m2l2c2 + I2 −
d2

2
d1

,

(2.3)

where m1 = m2 = 1 are the masses of both links, l1 = l2 = 1 are the lengths of the links, lc1
= lc2 = 0.5 are the positions of the center or mass of both links, τ is the input torque, and g
= 9.8 is gravity. The outputs of this systems are cos θ1, sin θ1, cos θ2, sin θ2, θ̇1 and θ̇2, which
are the inputs of the neural network containing [15,15,3] neurons in its 3 layers. This neural
network works as a classification function (similar to Cart-Pole), which outputs either 1, 0 or
-1 depending on the index of the greatest output value of the neural network.

We impose constraints on the maximum angular velocities allowed in the system vmax1 =
4π and vmax2 = 9π, for links 1 and 2 respectively. The initial states of the system θ1 and θ2 are
initialized uniformly at random to be within [-0.1, 0.1], and their corresponding rate of change,
ω1 and ω2, are initialized uniformly at random between [-0.1, 0.1] as well. The verification
objective of this system is to prove that the bottom link reaches, at east once, a height at least
the length of one link above the base with in the first 20 seconds. Formally, the systems needs
to satisfy the following formula:

− cos(θ1)− cos(θ1 + θ2) ≥ 1 (2.4)

2.4 Mountain Car.
This benchmark was obtained from the OpenAI gym [3], as reinforcement learning benchmark,
although it was first introduced by Andrew Moore in his PhD thesis [13]. However, we present
a continuous version of it, similar to the one evaluated by Ivanov et al. [9]. The overall system
consists of a car located on a one-dimensional track between two mountains and the objective
of the car is to climb up the mountain on the right. However, the car’s engine has limited power
and it cannot scale the mountain in a single pass. Therefore, the only way for the car to achieve
its goal is to drive back to the mountain to the left to build up momentum and then climb up
the mountain to the right. The controller has been trained using reinforcement learning, and
the dynamics of the system are given as follows* 5

ṗ = v,

v̇ = 0.0015u+ 0.0025 cos(3p)
(2.5)

5Originally introduced in discrete-time (time step not specified) in https://link.springer.com/content/
pdf/10.1007$%$2FBF00114726.pdf
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where p is the position and v is the velocity of the car. The controller presented in this system
is a neural network with 2 inputs (p and v), 3 layers with [16, 16, 1] neurons respectively, and
1 output (u). The verification objective of this benchmark is to show that the car will reach
the top of the right mountain before the first 50 seconds of execution, which can be formally
described as driving the car to p ≥ 0.45. This system has constraints on the velocity, which
needs to be within [-0.07, 0.07] and on the position, which cannot be outside [-1.2, 0.6]. The
initial conditions are defined to be v0 = 0, and p0 ∈ [-0.6, -0.4].

2.5 MPC Quadrotor.
In this case study, we present a six-dimensional control-affine model of a quadrotor controlled
by a feed-forward neural network initially introduced in [9], although here we have modified the
controller to have only ReLU and linear activation functions. The goal of this benchmark is
to verify that the quadrotor will reach its final position without colliding with nearby objects.
Formally, the verification problem is to ensure that the quadrotor follows the path planner and
tries to stay as close as possible to the path, i.e., stabilize the system of relative states r := q−p.
Specifically, we want the distance from the quadrotor to the path to be under 0.32 meters for
at least 10 seconds. The dynamics of this system are described as follows:

q̇ :=



ṗqx
ṗqy
ṗqz
v̇qx
v̇qy
v̇qz


=


vqx
vqy
vqz

g tan θ
−g tanφ
τ − g

 , ṗ :=



ṗpx
ṗpy
ṗpz
v̇px
v̇py
v̇pz


=


bx
by
bz
0
0
0

 (2.6)

where q̇ and ṗ are the quadrotor and planner dynamics, respectively; vi and pi represents the
velocity and position of coordinate i respectively, where i ∈ {x, y, z}. θ, φ, and τ are the control
inputs (pitch, roll and thrust), g = 9.81 m/s2 is gravity, and bi are piecewise constants. In this
case, we have constraints on the inputs which can only take on two possible values each: θ, φ
∈ {−0.1, 0.1}, and τ ∈ {7.81, 11.81}.

Some further constraints are presented in the initial states, where (prx, pry) ∈ [−0.05,−0.05]×
[0.05, 0.05]. As a controller, we use a neural network with 6 inputs (prx, pry, prz, vrx, vry, vrz), 3
layers with [20, 20, 8] neurons respectively, and 8 outputs. This is similar to the neural network
architectures seen in the acrobot and cart-pole, as the neural network has a predetermined set
of output actions, eight in this case, dependent on the index of the greatest output value. In
each case a unique combination of θ, φ and τ is sent to the controller.

2.6 Adaptive Cruise Controller (ACC).
The Adaptive Cruise Control (ACC) System simulates a system that tracks a set velocity and
maintains a safe distance from a lead vehicle by adjusting the longitudinal acceleration of an
ego vehicle. The neural network computes optimal control actions while satisfying safe distance,
velocity, and acceleration constraints using model predictive control (MPC) [14]. For this case
study, the ego car is set to travel at a set speed Vset = 30 and maintains a safe distance Dsafe

from the lead car. The car’s dynamics are described as follows:

ẋlead(t) = vlead(t), v̇lead(t) = γlead(t), γ̇lead(t) = −2γlead(t) + 2alead − uv2
lead(t),

ẋego(t) = vego(t), v̇ego(t) = γego(t), γ̇ego(t) = −2γego(t) + 2aego − uv2
ego(t),

(2.7)
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where xi is the position, vi is the velocity, γi is the acceleration of the car, ai is the acceleration
control input applied to the car, and u = 0.0001 is the friction control where i ∈ {ego, lead}.
For this benchmark we have developed four neural network controllers with 3, 5, 7, and 10
hidden layers of 20 neurons each. All of them have the same number of inputs (vset, Tgap,
vego, Drel, vrel), and one output (aego). The verification objective of this system is that given
a scenario where both cars are driving safely, the lead car suddenly slows down with alead =
-2. We want to check whether there is a collision in the following 5 seconds. Formally, this
safety specification of the system can be expressed as Drel = xlead - xego ≥ Dsafe, where Dsafe
= Ddefault + Tgap × vego, and Tgap = 1.4 seconds and Ddefault = 10. The initial conditions
are: xlead(0) ∈ [90,110], vlead(0) ∈ [32,32.2], γlead(0) = γego(0) = 0, vego(0) ∈ [30, 30.2], xego ∈
[10,11]. See Figure 3.1 for a verification example using this ACC benchmark.

2.7 Other benchmarks.
Finally, we also present a set of benchmark problems originally presented by Dutta et al.
in [5]. In their work, they present a collection of ten continuous dynamical systems, including
a quadrotor and a car. However, our benchmark suite only considers benchmarks 1 through 8.
Similar to the previous examples, all of these benchmarks contain feed-forward neural network
controllers with ReLU activation functions in the hidden layers and a linear function in the
output layer. In thier work the authors trained all of the neural networks using a MPC scheme
and included a disturbance w (except benchmark 8) to the control input u. We refer readers
to the following paper for a more detailed description of this set of benchmarks. [5].

3 Reachability Analysis.
In this section we present a brief investigation of the verification of the Adaptive Cruise Con-
troller (ACC) Benchmark in order to demonstrate the verification of a closed loop neural net-
work control system. This experiment was originally proposed in [19] and we present the results
here as an example of the methods currently available within the research literature. As previ-
ously mentioned, the safety verification problem of interest is that when the ego car makes use
of the speed control mode and both the lead car and the ego car are driving with a safe distance
between them, if the lead car suddenly brakes, we expect that the neural network controllers
will ensure that the ego car brakes correspondingly so as to maintain a safe distance between
the two cars [19]. In this particular case we consider a neural network controller with 5 hidden
layers each consisting of 20 neurons and make use of the Neural Network Verification Toolbox
(NNV) proposed by Tran et al. [19] to perform the verification. The initial conditions and
safety specifications are as described in subsection 2.6. The verification results demonstrate
that aforementioned controller is safe since it guarantees that the ego car maintains a safe
distance for the range of the lead car’s initial position that we considered as shown in Figure
3.1. Utilizing a computer with the following configuration: Intel Core i7-6700 @ 3.4 GHZ ×8
Processor, 62 GiB Memory, 64-bit Ubuntu 16.04.3 LTS OS. we were able to verify this safety
property with an average execution time of 305.17 seconds. The experiments can be found in
the following repository: https://github.com/verivital/nnv.
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Figure 3.1: Verification results for the ACC Benchmark. In all plots the black line represents a
simulation trace of the system. Top subplot: The green area represents the lead car’s velocity
reachable set, and the blue area represents the ego car’s velocity reachable set. Middle subplot:
The blue area represents the reachable set of the distance between the ego car and the lead
car. The red area represents the threshold under which the system becomes unsafe. Bottom
subplot: The light blue area represents the reachable set of the neural network control input to
the plant model.

4 Outlook and Conclusion.
In this manuscript we have presented a diverse set of challenging benchmarks for the verification
of closed-loop control systems with neural network controllers. The interest in these problems is
that they seek to stimulate the creation of methods and software tools that can handle the unique
challenges, such as severe overestimation errors, encountered by considering the verification of
such systems. Currently only a handful of methods have been proposed at solving this problem
and the existing verification methods for neural networks in isolation cannot be leveraged in
a straightforward fashion with tools designed for the verification of non-linear plant models.
Neural networks arise naturally in safety critical systems as they are a powerful paradigm for
solving deeply complex control problems and if the research community can demonstrate an
ability to effectively and efficiently reason about the correctness of their behavior within a
controls system context, they will stimulate the development of robust intelligent systems with
the potential to bring unparalleled benefits to a diversity of application domains. The neural
networks presented in this manuscript are all feed-forward networks using the ReLU activation
function in the hidden layers and a linear activation function in the output layer. In future
work we wish to consider control systems utilizing Convolutional Neural Networks as well as
network architectures that make use of more general activation functions.
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