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ABSTRACT
Deep Neural Networks (DNNs) are powerful machine learning mod-

els for approximating complex functions. In this work, we provide

an exact reachability analysis method for DNNs with Rectified

Linear Unit (ReLU) activation functions. At its core, our set-based

method utilizes a facet-vertex incidence matrix, which represents a

complete encoding of the combinatorial structure of convex sets.

When a safety violation is detected, our approach provides back-

tracking which determines the complete input set that caused the

safety violation. The performance of our method is evaluated and

compared to other state-of-the-art methods by using the ACAS Xu

flight controller and other benchmarks.
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1 INTRODUCTION
The versatility and ease-of-use of DNNs has made them popular in

a number of industrial systems, including safety-critical systems

such as autonomous systems. However, a major barrier in realizing

trustful autonomy is the lack of scalable methods for safety verifica-

tion. Recently, there has been significant effort to develop methods

to establish robustness and formal guarantees of Learning-Enabled

Components (LECs) [6, 8, 12, 13, 17, 20, 24, 27–30, 32, 33, 36–38].

One of the main approaches for safety verification is through

Reachability Analysis. There are two primary classes of reachability

analysis methods to formally analyze DNNs, over-approximation

and exact analysis. The approximationmethods are mainly based on

Mixed-Integer Linear Programs (MILPs) [6, 19, 21], zonotopes [8],

abstract domain [28], global optimisation [25], regressive poly-

nomial [5], network conversion [15], unified framework [4] and
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linearization [34, 38]. These methods provide soundness but not

completeness guarantees. An exception is the work in [6], where the

authors provide a MILP-based method is sound and complete but

is limited to neural networks with only one output. The common

strategy of the over-approximation methods is to apply a conserva-

tive convex domain to over-approximate the multiple linearities of

the ReLU function max(0, 𝑥) w.r.t. the input space in each neuron.

Thus when the input space spans both the positive and negative

domains where the ReLU exhibits different linearities, it does not

need to be separately considered. Such over-approximation meth-

ods generate a single reachable domain w.r.t. an input domain and

are capable of efficiently analyzing large scale neural networks, but

the conservativeness of the over approximation is normally large.

Themethods for exact analysis are based on Satisfiability Modulo

Theory (SMT) [17, 18], Interval Arithmetic [32, 33] and Set-based

methods [2, 31, 36]. The strategy of Reluplex [17] is to extend the

simplex method to handle the piece-wise linear ReLU activation

function. The Marabou [7, 18] method is an extension of Reluplex.

It supports arbitrary piecewise-linear activation functions, parallel

computation, etc. Another work, Neurify [32, 33] is based on inter-

val arithmetic to over approximate the bounds on the outputs. The

method iteratively refines the over-approximation of the output

reachable sets by bisecting its input range, and it doesn’t terminate

until a counterexample is found or the network is verified safe.

In [2, 31, 36], the authors conduct reachability analysis by using

polytope and star set representations. Different from the SMT and

Interval Arithmetic methods, they compute the exact output reach-

able sets of a neural network. This provides more information to

the practitioner on the neural network’s behavior. The advantage of

such reachability analysis is not only limited to the verification of

neural network, but also can facilitate the training of adversarially-

robust neural networks [1, 22, 35].

In this paper, we propose a set-based method for exact reacha-

bility analysis of DNNs. We utilize a Facet-Vertex Incidence Matrix

(FVIM), which represents a complete encoding of the combinatorial

structure of convex sets. The FVIMs are mathematical structures

with very useful properties for set manipulation. The vertices of the

set can be directly utilized to determine whether the input set spans

both negative and positive input ranges of the ReLU function in

neurons, such that the LP used in [2, 31, 36] can be avoided and the

problem can be solved more efficiently. When the input set spans

the two input ranges of the ReLU function, it can also be quickly

split into two subsets. This speeds up the computation of the reach-

able set significantly in comparison with the aforementioned exact

methods. An additional feature of the proposed method is that it
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enables output-to-input backtracking. This enables the computa-

tion of the complete input set that caused a safety violation. This

is very useful for debugging and retraining the network. Finally,

the performance of our method is evaluated and compared to other

state-of-the-art methods by using the ACAS Xu DNNs and other

benchmarks.

2 PRELIMINARIES
2.1 Neural Network Verification
DNNs consists of one input layer, multiple hidden layers, and one

output layer. Each layer contains multiple neurons which are in-

terconnected with neurons in the next layer by weights and bias

in a feed-forward way. The output of each neuron is associated

with three components: its input weight 𝜔 , input bias 𝑏 and the

activation function 𝑓 , namely:

𝑦𝑖 = 𝑓 (
∑𝑛

𝑗=1
𝜔𝑖, 𝑗𝑥 𝑗 + 𝑏𝑖 )

where 𝜔𝑖 𝑗 and 𝑏 𝑗 are respectively the weight and bias from the 𝑗 th

neuron of the previous layer to the 𝑖th neuron of the current layer,

and 𝑥 𝑗 is an input to this neuron and also the output of 𝑗th neuron

in the front layer, and 𝑦𝑖 is the output of the 𝑖th neuron. In this

paper, we consider networks that contain ReLU activation functions

which are defined as ReLU(𝑥) = max(0, 𝑥). Let𝑊(𝑘,𝑘-1) , 𝑏𝑘 denote

the weight matrix, the bias vector between the (𝑘-1)th layer and

𝑘th layer, and 𝑋𝑘 be its input consisting of elements 𝑥 𝑗 , then the

output of the 𝑘th layer will be Eq. 1. For the first hidden layer, its

input 𝑋1 is equal to the input to the network 𝑋0. The output of one

layer is also an input of the next layer. Therefore, given an input

𝑋0, the output 𝑌𝑘 of the 𝑘th layer will be Eq. 2.

𝐿(𝑋𝑘 ) = ReLU(𝑊(𝑘,𝑘-1)𝑋𝑘 + 𝑏𝑘 ) (1)

𝑌𝑘 = 𝐿𝑘 (𝐿𝑘−1 (. . . (𝐿1 (𝑋0)))) (2)

Definition 2.1 (Reachable Sets and Reachable Domain of

Neural Networks). Given a neural network N and an input set
𝑃 ∈ R𝑛𝑖𝑛 , a reachable set 𝑆 ∈ R𝑛𝑜𝑢𝑡 indicates a set where ∀𝑦 ∈
𝑆, ∃𝑥 ∈ 𝑃 𝑎𝑛𝑑 𝑦 = N(𝑥). The computation of reachable sets is
{𝑆1, 𝑆2, . . . , 𝑆𝑙 } = Reach(N , 𝑃). The reachable domain D is the
union of all the computed reachable sets

⋃𝑙
𝑖=1 𝑆𝑖 where ∀𝑥 ∈ 𝑃,𝑦 =

N(𝑥) 𝑎𝑛𝑑 𝑦 ∈ D besides the condition for reachable sets.

The input set 𝑃0 is constructed with the norm 𝐿∞ bound and the

input to the 𝑘th layer is denoted as 𝑃𝑘 . We also denote the linear

transformation by𝑊(𝑘,𝑘-1) , 𝑏𝑘 on 𝑃𝑘 as a function T𝑘 (𝑃𝑘 ) and the

following operation from the ReLU functions of neurons as R𝑘 (·).
Therefore, the whole process of the 𝑘th layer w.r.t. the input set 𝑃𝑘
can be denoted as

O𝑘 = R𝑘 (T𝑘 (𝑃𝑘 )) (3)

The T𝑘 function outputs one affine transformed set 𝑃 ′
𝑘
w.r.t. an

input set 𝑃𝑘 . While the R𝑘 may yield multiple output sets due to

the the different linearities of the ReLU function w.r.t. the input set.

Finally, O𝑘 is passed on as an input set to the next layer.

The reachable sets are also associated with the linear regions of
neural networks [10, 23, 26]. A linear region of a piecewise linear

function 𝐹 : R𝑛 → R𝑚 refers to a maximum convex subset of an

input set inR𝑛 , onwhich the function 𝐹 is linear. As described above,

a set is either affine transformed by weights and bias, or divided into

subsets to match the different linearities of ReLU functions in each

neuron. Thus the DNN exhibits unique linearity for each output

reachable set over a subspace of the input set. Those subspaces are

linear regions. Our method takes advantage of this property in the

back-tracing process, where it tracks back to the input space given

a particular output set. The details will be introduced in Section 5.

The verification of a neural network using reachability analysis

is defined as follows.

Definition 2.2 (Verification of Neural Networks). Given
a neural network N , an input set 𝑃0 ∈ R𝑛𝑖𝑛 and an unsafe do-
main U ∈ R𝑛𝑜𝑢𝑡 . The verification problem is to determine whether
(⋃ Reach(N , 𝑃)) ∩ U = ∅.

2.2 Facet-Vertex Incidence Matrix
A convex polytope is a convex subset 𝑃 ∈ R𝑑 and can be represented

by the vertex representation (V-rep) or the half-space representation

(H-rep). The V-rep represents 𝑃 as a finite number of extreme points

(vertices), whereas the H-rep represents 𝑃 as the intersection of a

set of closed halfspaces (in terms of linear inequalities).

In [36], the reachability analysis of neural networks utilizes both

the V-rep and the H-rep to compute reachable sets. The V-rep of 𝑃

is utilized to conduct affine transformations between layers, and the

H-rep is utilized for the computation of new subsets while consid-

ering the linear constraints from the input range in ReLU neurons.

The iterative process, which requires the back-and-forth conver-

sion between representations, is called the enumeration problem in

computational geometry and has a high computational complexity.

In [2, 30], the authors use the Star set based on the H-rep and can

avoid the conversion issue. However, the computation for each

neuron involves a large number of LP processes, which has a signif-

icant impact on its efficiency. Other works [8, 27] utilize zonotope

representations, which are centrally symmetric polytope represen-

tations. The issue with these approaches is that with large inputs,

the over-approximation in every layer is overly conservative and

this increases exponentially with every layer.

In this work we utilize a Facet-Vertex Incidence Matrix to encode

the complete combinatorial structure of a polytope. The FVIM

enables quick operations over convex polytopes. For example, the

containment relation is completely encoded. This enables fast affine

transformations and can be used to derive vertex adjacency for fast

division by hyperplanes. In the rest of the section, we provide a

formal definition of the FVIM. For details, see [9, 11].

Consider a 3-dimensional cube as illustrated in Fig. 1. The graph

below with blue blocks describes the containment relation between

the facets and vertices and is equivalent to the FVIM shown in Eq. 5.

In FVIM, 𝑓∗ denotes the facet/plane and 𝑣∗ denotes the vertex of

the cube. For instance, 𝑓1 is the 2-𝑓 𝑎𝑐𝑒 : 𝑝𝑙𝑎𝑛𝑒1,2,3,4.
We define polytopes using FVIM F and a vertices 𝑉 as follows:

𝑃 = ⟨F ,𝑉 ⟩ (4)

In order to define a Facet-Vertex Incidence Matrix, we first need to

define the notion of a supporting hyperplane and face of a polytope.

Definition 2.3 (Supporting Hyperplane). A hyperplane 𝐻
denoted by 𝑎⊤𝑥 = 𝑏 is a supporting hyperplane of polytope 𝑃 if
one of its closed halfspaces, 𝑎⊤𝑥 ≤ 𝑏 or 𝑎⊤𝑥 ≥ 𝑏 contains 𝑃 .
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Definition 2.4 (Face & Facet). The face of a d-dimensional
polytope 𝑃 is an intersection of 𝑃 with a supporting hyperplane. When
the dimension of aff (𝑃 ∩ 𝐻 ) is 𝑘 , the face is denoted as k-face. The
function aff (𝑆) indicates the affine hull of S, which is the smallest
affine set that contains S. 𝑃 contains {0-𝑓 𝑎𝑐𝑒 , 1-𝑓 𝑎𝑐𝑒 ,..., (𝑑 − 1)-𝑓 𝑎𝑐𝑒}
where the 0-𝑓 𝑎𝑐𝑒 is named vertex and the (𝑑 − 1)-𝑓 𝑎𝑐𝑒 is named
facet. The cardinality of the set of all 𝑘-𝑓 𝑎𝑐𝑒s is denoted as fk(P).

Definition 2.5 (Facet-Vertex Incidence Matrix). Given a
full-dimensional polytope 𝑃 ∈ R𝑑 , the facet-vertex Incidence ma-
trix is a matrix𝑀 ∈ {0, 1}𝑓𝑑−1 (𝑃 )×𝑓0 (𝑃 ) where an entry𝑀 (𝐹, 𝑣) = 1

indicates the facet 𝐹 contains the vertex 𝑣 , and an entry𝑀 (𝐹, 𝑣) = 0

indicates that it does not.

FVIM =

©­­­­­­­«

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8

𝑓1 1 1 1 1 0 0 0 0

𝑓2 0 0 1 1 1 1 0 0

𝑓3 0 0 0 0 1 1 1 1

𝑓4 1 1 0 0 0 0 1 1

𝑓5 0 1 1 0 0 1 1 0

𝑓6 1 0 0 1 1 0 0 1

ª®®®®®®®¬
(5)

3 OPERATIONS ON POLYTOPES
Our method relies on two basic operations for processing polytopes

through a neural network. This includes affine transformation by

weights and division by a hyperplane𝐻 . In the following, we present

each operation in detail.

3.1 Affine Transformation
An affine transformation canmap a polytope to a higher-dimensional

or lower-dimensional space. A polytope 𝑃 is called full-dimensional

if it is a d-dimensional object in R𝑑 . Otherwise, if 𝑃 is in R𝑛>𝑑 , then
it is not full-dimensional.

Remark 3.1. Polytopes that differ only by an affine transforma-
tion are combinatorially equivalent. The main reason is that an affine
transformation only changes vertices but preserves polytopes’ combi-
natorial structure [9, 11].

Therefore, the FVIM remains unchanged under affine transfor-

mation regardless if it is on a higher or lower dimensional space.

Let𝑊 , 𝑏 denote the weights and bias of an affine transformation.

Then the computation of FVIM F ′
and vertices 𝑉 ′

of the output

polytope 𝑃 ′, under an affine transformation, can be formulated as in

Eq. 6. This process computes the exact affine transformed polytope

as represented by the function T in Eq. 3.

F = F ′, 𝑉 ′ =𝑊𝑉 + 𝑏 (6)

3.2 Division by Hyperlanes
Another common operation when processing polytopes is the di-
vison by hyperplanes. A hyperplane 𝐻 divides the input range of

a ReLU function into two sub-ranges over which the function ex-

hibits different linearities. Division is only considered when the set

𝑃 intersects 𝐻 . As the polytope representation has vertices 𝑉 of 𝑃 ,

the determination whether an intersection is needed can be made

by checking whether the distribution of vertices 𝑉 is on one side

of a hyperplaneH . For example, letH be a⊤x +𝑏 = 0. To compute

the distribution of vertices, we can substitute x with V. Formally,

we define a the set of positive vertices as𝑉 + = {𝑣 ∈ 𝑉 |a⊤v +𝑏 > 0}

and negative vertices as 𝑉 − = {𝑣 ∈ 𝑉 |a⊤v + 𝑏 < 0}. Here we make

an assumption that no vertices are located on the hyperplane 𝐻 . In

practice, this is an extremely unlikely occurrence due to floating

point computation. When computing a division by hyperplane 𝐻 ,

on of the following three cases may occur:

(1) Both𝑉 +
and𝑉 −

are non-empty. In this case, the hyperplane

𝐻 intersects with 𝑃 . The polytope 𝑃 will be divided by 𝐻

into two non-empty polytopes 𝑃+𝐻
𝑠𝑢𝑏

and 𝑃−𝐻
𝑠𝑢𝑏

. The positive
polytope w.r.t. 𝐻 , 𝑃+𝐻

𝑠𝑢𝑏
is defined as ∀x ∈ 𝑃, a⊤x + 𝑏 ≥ 0 On

the other hand the negative polytope w.r.t. 𝐻 , is defined as

∀x ∈ 𝑃, a⊤x + 𝑏 ≤ 0.

(2) Only set 𝑉 +
in non-empty. In this case, polytope 𝑃 is on the

positive closed halfspace of 𝐻 and we have 𝑃+𝐻 .

(3) Only set 𝑉 −
in non-empty. In this case, polytope 𝑃 is on the

negative closed halfspace of 𝐻 and we have 𝑃−𝐻 .

3.2.1 Identification of a new Facet. When a hyperplane𝐻 intersects

with 𝑃 and we have both 𝑃+𝐻
𝑠𝑢𝑏

and 𝑃−𝐻
𝑠𝑢𝑏

, the intersection creates

one common facet with multiple vertices for both subsets. The

derivation of the facet is as follows. In [9, 11], the authors show that

an intersection of a polytope with an affine subspace (hyperplane)

is a polytope. Therefore, the intersection generates one polytope

𝑃𝑏 where 𝑃𝑏 ∈ 𝑃+𝐻
𝑠𝑢𝑏

and 𝑃𝑏 ∈ 𝑃−𝐻
𝑠𝑢𝑏

. In the following, we show that

𝑃𝑏 is a new facet.

Theorem 1. Given a d-dimensional polytope 𝑃 located in R𝑛≥𝑑

space, and a hyperplane𝐻 ∈ R𝑛−1 where 𝑃 ⊈ 𝐻 , then the intersection
of 𝑃 with 𝐻 is a one (𝑑-1)-dimensional polytope 𝑃𝑏 . 𝑃𝑏 is also a
common facet of subsets 𝑃+𝐻

𝑠𝑢𝑏
and 𝑃−𝐻

𝑠𝑢𝑏
.

Proof. In dimension theory [14], given a vector space 𝑉 , and

𝑈 ,𝑊 , two subspaces of 𝑉 , we have that

dim(𝑈 +𝑊 ) = dim(𝑈 ) + dim(𝑊 ) − dim(𝑈 ∩𝑊 )
where 𝑑𝑖𝑚(·) returns the dimension of the object. Since 𝑃 ⊈ 𝐻 , we

have dim(𝑃 + 𝐻 ) = 𝑛. By substituting𝑈 ,𝑊 with 𝑃 ,𝐻 , we have that

dim(𝑃 ∩ 𝐻 ) = dim(𝑃) + dim(𝐻 ) − dim(𝑃 + 𝐻 ) = 𝑑 − 1

Therefore 𝑃𝑏 is (𝑑-1)-dimensional polytope. Here, we use a re-

sult from polytope theory which states that a face of polytope is

equivalent to a polytope [11]. We can conclude that a polytope

𝑃𝑏 generated from the intersection is a common facet of both sub-

sets. □

3.2.2 Identification of New Vertices. When a hyperplane 𝐻 inter-

sects with 𝑃 , new vertices are generated from the intersection of

𝐻 with the edges of 𝑃 . Therefore, to compute the new vertices,

the edges of 𝑃 first need to be identified from the FVIM. For a

regular d-dimensional polytope, if 𝑑 < 4, then two vertices are

adjacent and form an edge if and only if they are contained by at

least (𝑑 − 1) common facets. But this criterion does not apply to

higher-dimensional polytopes where vertices may be nonadjacent

under the same condition.

However, with the assumption above that no vertices of 𝑃 lie

on the hyperplane, the criterion becomes suitable for the higher-

dimensional polytopes in our reachability analysis. First, we can

show that all the polytopes in our analysis are simple polytopes.

Definition 3.1 (Simple polytope). A d-dimensional polytope is
simple polytope if each vertex is contained in exactly 𝑑 facets.
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Figure 1: Division of a 3-dimensional cube 𝑃 by a hyperplane 𝐻 . The graph which describes the containment relation between
facets and vertices is equivalent with the FVIM. The blue blocks denote the faces of 𝑃 and the red blocks denote the new faces
generated from the intersection.

The input set created with the norm 𝐿∞ bound is a hyperrectan-

gle. The hyperrectangle is a simple polytope which is closed under

affine-transformation [11]. According to Theorem 2, the subsets

from the division of a simple polytope are also simple polytopes. In
terms of the polytope theory, two vertices of a d-dimensional simple
polytope are adjacent and form an edge if they are contained in

exactly (𝑑-1) common facets. Suppose a pair of vertices v1 and v2
form an edge 𝐸 of 𝑃 , the new vertex v generated from 𝐸 ∩ 𝐻 can

be computed by Eq. 7 where 𝜆 is an unknown scalar.{
v = v1 + 𝜆(v2 − v1)
a⊤v + 𝑏 = 0

(7)

Theorem 2. Given a d-dimensional simple polytope 𝑃 and a hy-
perplane 𝐻 which intersects with 𝑃 without any vertices of 𝑃 located
on 𝐻 , then the two subsets from the division are simple polytopes

Proof. Suppose there are 𝑙 edges 𝐸𝑖,𝑖∈{1,...,𝑙 } ∈ 𝑃 intersect-

ing with 𝐻 . Thus 𝑙 new vertices 𝑣 are generated respectively and

𝑣𝑖 ∈ 𝐸𝑖 , 𝑣𝑖 ∈ 𝐻 . Since 𝑃 is a simple polytope, each edge is contained

in exactly (𝑑-1) facets. Then, each new-generated vertex 𝑣 is also

contained in (𝑑-1) facets of 𝑃 . As Theorem 1 states, the intersec-

tion creates a common facet for both subsets. Then each 𝑣 is also

contained by this facet. Therefore, all vertices in two subsets are

adjacent to exactly 𝑑 facets,and the subsets are simple polytopes. □

3.2.3 Derivation of Two Subsets. After identifying the new facet

and vertices generated from the intersection, the next step is to

dividing the original polytope 𝑃 into two subsets according to

the containment relation between facets and vertices. An example

of a division of the 3-dimensional cube is shown in Fig. 1. The

intersection of 𝑃 with 𝐻 is the new facet 𝑝𝑙𝑎𝑛𝑒 {9,10,11,12} which
is denoted as facet {7} in the graph. Negative vertices {1, 2, 3, 4}
and positive vertices {5, 6, 7, 8} w.r.t. 𝐻 are first identified. As 𝑃 is a

simple polytope, vertices that are contained in exactly 2 common

facets are adjacent and form an edge of 𝑃 . Thus, the edges 𝐸1,8, 𝐸2,7,

𝐸3,6 and 𝐸4,5 are identified intersecting with 𝐻 and generate new

vertices 𝑣9, 𝑣10, 𝑣11 and 𝑣12. Their values can be computed according

to Eq. 7. Their containment relation with facets is inherited from

the relation between the edges with facets. For instance, 𝑣9 is from

the intersection of 𝐸1,8 with 𝐻 , and 𝐸1,8 are contained in facets

𝑝𝑙𝑎𝑛𝑒1,4,5,8 and 𝑝𝑙𝑎𝑛𝑒1,2,7,8. Therefore, 𝑣9 is also contained in these

two facets. This inheritance relation is described by the red-line

connection between Facet {4, 6} and Vertex {9} in the graph. Finally,
the graph is split in terms of 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 and 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 vertices as well

as the new vertices, generating two compact and exact FVIMs for

the subsets and completing the division.

4 REACHABILITY ANALYSIS WITH FVIM
In the previous section, we described the affine transformation and

division operations, two basic operations for reachability analysis

with FVIM. In this section, we present the application of these

operations in one layer of the neural network and then extend

them to the entire network. The process is illustrated in Fig. 2. In

each layer, first we apply an affine transformation to the input

polytope 𝑃𝑘 by the weights and bias Fig. 2 ( 1 ). Then, we apply a

divison operation on the resulting polytope to process it through

the ReLU activation function Fig. 2 ( 2 ).

Suppose a neuron layer contains 𝑛 neurons, and let x ∈ R𝑛 be

an input. In the 𝑖𝑡ℎ neuron, the input range of its ReLU function

is divided by x𝑖 = 0 into two domains over which the function

exhibits different linearities. The x𝑖 = 0 can also be formulated as

a hyperplane 𝐻𝑖 : a⊤x = 0 where a𝑖 = 1 and the rest are zeros.

When an input polytope 𝑃 intersects with 𝐻𝑖 which indicates that

the polytope spans two input domains of the ReLU function in the

𝑖th neuron, this polytope will be divided by 𝐻𝑖 according to the

division operation. Then two subsets 𝑃
−𝐻𝑖

𝑠𝑢𝑏
and 𝑃

+𝐻𝑖

𝑠𝑢𝑏
are obtained.

This process can be formulated as

Q𝑖 = E𝑖 (𝑃) (8)

where Q𝑖 can be one or two output polytopes for the three inter-

section cases. For the output negative subset that is located in the

negative closed halfspace of 𝐻𝑖 , the x𝑖 dimension of all points be-

longing to it is set to zero in terms of the property of the ReLU

function. This process is equivalent to a linear transformation and

can be implemented with Eq. 6. Let 𝐼𝑘 denote the input polytope

to the neuron layer. Then by sequentially processing 𝐼𝑘 w.r.t. each

neuron as shown in Eq. 8, we can consider all combinations of

linearities. This reachability analysis, for the k-th layer, which was

initially described by R in Eq. 3, can be reformulated as a sequence

of E(·) functions as follows:

O𝑘 = R𝑘 (𝐼𝑘 ) = E𝑛 (. . . (E2 (E1 (𝐼𝑘 ))) (9)

where 𝑛 is the number of neurons. An example is demonstrated in

Fig. 2 ( 2 ). The layer contains 2 ReLU neurons. First, E1 (·) is applied
to the input polytope as shown in (a). The polytope is divided by

the hyperplane 𝐻1 into two polytopes 𝑃1 and 𝑃2 which are 𝑃
+𝐻1

𝑠𝑢𝑏



Reachability Analysis of Deep ReLU Neural Networks using Facet-Vertex Incidence HSCC ’21, May 19–21, 2021, Nashville, TN, USA

0

(a)

(x
2 
,H1)

P
2

P
1

(x
1 
,H2)

0

(b)

(x
2 
,H1)

P
1

(x
1 
,H2)

P
3

0

(c)

(x
2 
,H1)

P
4

(x
1 
,H2)

P
6

P
7

P
5

0

(d)

(x
2 
,H1)

P
8

(x
1 
,H2)

P
6

P
9

P
5

x
2 

x
1 0

Affine Transformation Process w.r.t. Neurons

(W, b)

1 2

Figure 2: A simple layer that contains 2 neurons to demonstrate the processing of an input polytope

and 𝑃
−𝐻1

𝑠𝑢𝑏
. Then the x1 dimension of all element points in 𝑃

−𝐻1

𝑠𝑢𝑏
is

set to zero, generating a new polytope 𝑃3 (red solid line) in (b). Then

the output 𝑃1 and 𝑃3 will be the inputs to the function E2 (·). As
shown in (c). 𝑃1 and 𝑃3 are divided by 𝐻2 into {𝑃4, 𝑃5} and {𝑃6, 𝑃7},
respectively. 𝑃4 and 𝑃7 are in 𝑃

−𝐻2

𝑠𝑢𝑏
and the x2 dimension of points is

set to zero as shown in (d), creating 𝑃8 and 𝑃9 (origin), respectively.

Finally the output polytopes of this layer w.r.t. 𝐼𝑘 are {𝑃5, 𝑃6, 𝑃8, 𝑃9},
and the whole process can be formulated as

{𝑃5, 𝑃6, 𝑃8, 𝑃9} = E2 (E1 (𝐼𝑘 ))
The output polytopes of the current layer will be the inputs to

the next layer. Let the process of the 𝑘𝑡ℎ layer in Eq. 9 be denoted

as a function L𝑘 (·), then given an input set 𝐼 , and number of layers

𝑙 , the computation of reachable sets can be defined as:

O = L𝑙 (. . .L2 (L1 (𝐼 ))) (10)

The algorithm for the computation of reachable sets is shown in

Algorithm 1. Its implementation is highly parallelizable because (1)

the input sets to each layer are independent in the for loop in Line 5,

(2) the processing of each set w.r.t. one neuron is also independent

in the for loop in Line 14. The details of functions are as following:

(1) The Reach() function corresponds to Eq. 10. Given an input

set to the neural network, it computes all the reachable sets.

(2) The singleLayer() function computes reachable sets of the

target layer given an input set.

(3) The affineTransform() function corresponds to Eq. 6. It

computes the affine transformation on the input set with the

weight matrix and bias vector between layers.

(4) The Divide() function corresponds to Eq. 8, which is illus-

trated in Fig. 2. Here we only present one case where 𝑃 ′

intersects with the hyperplane.

(5) The Project() function is used to set the target dimension

of the elements of a polytope to zeros, which is equivalent

to a linear transformation.

Given an input set to the neural network that has𝑛 ReLU neurons,

the maximum number of reachable sets is bounded by 2
𝑛
.

5 BACKTRACKING
Given an input set, the algorithm introduced in the previous section

can compute the exact reachable sets for neural networks. How-

ever, our method also supports backtracking, which is the process

of computing the input sets associated with a subset of the output

domain. This is particularly useful in verification, since we can

use this process to find input areas which are associated with pos-

sible violations. We track the connection between the polytopes

processed in layers and their corresponding linear regions in the

input space. Here we revise the representation of polytopes in Eq. 4

Algorithm 1 Reachable set computation of a neural network

Input: 𝐼 # input set to the neural network

Output: O # reachable sets of the 𝑛th layer

1: procedure O = Reach(𝐼 )

2: I𝑘 = 𝐼 # I𝑘 : input sets to the 𝑘th layer

3: for 𝑘 = 1 : layers do # layers: the number of layers
4: O𝑘 = 𝑒𝑚𝑝𝑡𝑦 # O𝑘 : output set of the 𝑘th layer

5: for 𝑃 in I𝑘 do
6: S𝑘 = singleLayer(𝑘 , 𝑃 )

7: Add S𝑘 to O𝑘

8: I𝑘 = O𝑘

9: return O = O𝑘

10: procedure S𝑘 = singleLayer(𝑘 , 𝑃 )

11: S𝑘 = affineTransform(𝑘 , 𝑃 )

12: for 𝑖 = 1 :𝑚 do #𝑚: the number of neurons

13: S𝑡𝑒𝑚𝑝 = 𝑒𝑚𝑝𝑡𝑦

14: for 𝑃 ′
in S𝑘 do

15: 𝑃 ′+
, 𝑃 ′−

= Divide(𝐻𝑖 , 𝑃
′
)

16: 𝑃 ′−
= Project(𝑖 , 𝑃 ′−

)

17: Add 𝑃 ′+, 𝑃 ′−
to S𝑡𝑒𝑚𝑝

18: S𝑘 = S𝑡𝑒𝑚𝑝

19: return S𝑘

by replacing the set of vertices 𝑉 with an affine transformation of

points in the input space:

𝑃 = ⟨F ,𝑉𝑖 , 𝑀,𝑑⟩ (11)

𝑉𝑖 is a set of points and represents a convex subset of the input

space to the network. The vertices of 𝑃 can be computed with𝑉𝑖 by

𝑉 = 𝑀𝑉𝑖 + 𝑑 . This linear relation between 𝑉𝑖 and 𝑉 indicates that

the convex subset is the linear region of 𝑃 . The linear region of the

input set to the network can be constructed with 𝑉𝑖 = 𝑉 ,𝑀 as an

identity matrix and 𝑑 as a zeros vector.

With the representation of polytopes as a tuple ⟨F ,𝑉𝑖 , 𝑀,𝑑⟩, the
affine transformation in Eq. 6 will be slightly different. As shown in

Eq. 12, the new operation on polytopes will update𝑀 and 𝑑 instead

and preserve 𝑉𝑖 . Hence, the linear region of 𝑃 can be tracked. The

updated polytope ⟨F ′,𝑉 ′
𝑖
, 𝑀 ′, 𝑑 ′⟩ is calculated as follows:

F ′ = F , 𝑉𝑖
′ = 𝑉𝑖 , 𝑀 ′ =𝑊𝑀, 𝑑 ′ =𝑊𝑑 + 𝑏 (12)

We note that the division operation in Eq. 8 is not affected. When

checking the distribution of vertices of 𝑃 w.r.t. a hyperplane 𝐻 , its

vertices can be computed by𝑉 = 𝑀𝑉𝑖 +𝑑 . As 𝑃 only differs from its

linear region by an affine transformation, they have the same FVIM

F . Hence the division on F not only divides 𝑃 and its linear region.

5.1 Identification of Unsafe Input Subspace
Let the output unsafe domain be U : {y |𝐴y + v ≤ 0}. Suppose
we have a reachable set 𝑃=⟨𝐹,𝑉𝑖 , 𝑀,𝑑⟩. First, the vertices of 𝑃 are
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computed by𝑉 = 𝑀𝑉𝑖 +𝑑 and we can inspect whether 𝑃 intersects

withU. If not, the input subspace characterized by 𝑉𝑖 is safe.

In case of an intersection, a series of division operations will be

conducted for the backtracking. In each division, the hyperplane
is constructed from one of the linear inequalities of U. One linear

inequality a⊤y + 𝑣 ≤ 0 is essentially a negative closed halfspace

of a hyperplane 𝐻 : a⊤y + 𝑣 = 0. The 𝑃−𝐻
𝑠𝑢𝑏

generated from the

division with 𝐻 contains all element points that satisfy this linear

inequality. Then 𝑃−𝐻
𝑠𝑢𝑏

is the input set to the division with the next

linear inequality. We can obtain the final unsafe set after sequen-

tially considering all linear inequalities of U, and its vertices 𝑉𝑖
represents the unsafe input subspace.

6 EVALUATION
6.1 Safety Verification of ACAS Xu Networks
In this section, we evaluate our method against the Marabou [18],

NNV-exact [31], nnenum [2], Venus [3] and Neurify [32] methods,

which conduct a sound and complete verification. We also include

ERAN [27], which is an over-approximation method. We include it

to demonstrate that performance-wise, over-approximation may

not provide a significant improvement in efficiency and effective-

ness as opposed to our exact method.

We verify safety of the DNN benchmarks proposed in [16] for

the Airborne Collision System X Unmanned (ACAS Xu). These

benchmarks have been widely tested by the verification commu-

nity [2, 18, 30–32]. The ACAS Xu networks are used to approximate

a large lookup table that converts sensor measurements into maneu-

ver advisories. The memory intensive lookup table was successfully

reduced to a DNN. The set of networks contain 45 fully-connected

DNNs for different combinations of discretized parameters. Each

one has five inputs, five outputs, and six hidden layers. Each layer

consists of 50 ReLU neurons. There are 300 hidden neurons total in

each network. There are ten safety properties 1-10 which specify

input bounds 𝑃 and unsafe domainsU in the output. The details

can be found in the Appendix of [17].

We tested all 45 networks for properties 1,2,3 and 4, with 180

instances in total . The hardware configuration is Intel Core i9-

10900K CPU @3.7GHz×, 10-core and 20-thread Processor, 128GB

Memory, 64-bit Ubuntu 18.04. The results as a cactus plot are shown

in Fig. 3. Our method is the only method that can verify all the 180

instances without timing out (120s). Although Neurify [32] is faster

than our methods on some instances by a few seconds, there are

instances where it performs significantly worse. In some instances,

Neurify takes up to one hour. For properties 5-10, we select an

individual network that is commonly used by other publications.

The result is shown in Table 1. Marabou is not included since their

published code does not support disjunctive conditions for the input

domain. In addition, our approach can also identify the subspace of

the input space that leads to the safety violation.

6.2 Reachability Analysis of Microbenchmarks
To further evaluate our approach, we compare them on a set of mi-

crobenchmarks that are proposed in [6]. These benchmarks consist

of neural networks are created from the unwindings of a closed-

loop controller and a plant model. Here we check these networks’

safety on some synthetic unsafe domains. Neurify is not included
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Figure 3: Test on ACAS Xu Property 1-4 with timeout. The
timeout for each instance is set to 120 seconds. ERAN fails to
complete all instances. The figure below is without timeout.

Table 1: Evaluation on properties 5-10 with 1hr timeout.

P Net Result
Our

Method nnenum
NNV
-Exact Neurify ERAN Venus

5 𝑁11 SAFE 1.7 4.3 84.1 4.8 - 174.6

6.1 𝑁11 SAFE 4.7 20.9 TT 1.2 6.0 325.7

6.2 𝑁11 SAFE 5.6 24.1 TT 0.5 - 402.4

7 𝑁19 UNSAFE 1757.0 3730.5 TT 344.5 - 5298.0

8 𝑁29 UNSAFE 5.2 0.1 TT 24.4 - 0.7

9 𝑁33 SAFE 6.9 26.0 TT 146.2 - 926.8

10 𝑁45 SAFE 1.1 4.0 TT 0.4 10.3 78.4

Table 2: Performance results on the microbenchmarks. The
label 𝑥 , 𝑘 and𝑚 respectively denote the number of input, the
number of layers and total number of ReLU neurons. The
running time is in 𝑠𝑒𝑐. The timeout is set to 10 minutes.

ID 𝑥 𝑘 𝑚 Our Method Marabou NNV nnenum

𝑁11 3 9 1427 65.5 567.7 TIMEOUT LP Error

𝑁12 3 14 2292 96.5 TIMEOUT TIMEOUT LP Error

𝑁13 3 19 3057 128.9 HD Error TIMEOUT LP Error

𝑁14 3 24 3822 150.9 HD Error TIMEOUT LP Error

𝑁15 3 127 6845 2.3 Error 383.5 12.7

as we fail to apply their published code to these new networks. The

performance on each benchmark is shown in Table 2. The neural

networks consist of thousands of neurons, as indicated in column𝑚

in Table 2. As shown in Table 2, our approach computes the reach-

able sets for large networks. For Marabou, the HD Error indicates a
high-degradation error. The 𝐸𝑟𝑟𝑜𝑟 means Marabou returns a false

verification result for the instance. The LP Error for the nnenum
indicates that the algorithm is terminated by a LP-solver error.

7 CONCLUSION AND FUTUREWORK
In this paper, we presented a polytope-based method to conduct

exact reachability analysis of feed-forward neural networks with

ReLU activation. Experimental results indicate that, in most cases,

our method is faster than state-of-the-art methods. In the future,

we will consider applying our approach for reachability analysis

and safety verification of learning-enabled control systems with

machine learning components.
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